Search results for "Olfactory ensheathing glia"

showing 8 items of 8 documents

Cranial Pair I: The Olfactory Nerve

2018

The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory ner…

0301 basic medicineOlfactory systemHistologyCranial nervesCentral nervous systemSensory systemOlfactionBiology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemOlfactory nerveNeuropilmedicineOlfactory ensheathing gliaAnatomyNeuroscience030217 neurology & neurosurgeryEcology Evolution Behavior and SystematicsBiotechnologyThe Anatomical Record
researchProduct

Adult-derived neural precursors transplanted into multiple regions in the adult brain

1999

Neural stem cells persist in the adult brain subventricular zone (SVZ). These cells generate a large number of new neurons that migrate to the olfactory bulb, where they complete their differentiation. Here, we transplanted cells carrying beta-galactosidase under the control of neuron-specific enolase promoter (NSE::LacZ) from the SVZ of adult mice into the striatum cortex and olfactory bulb, with or without an excitotoxin lesion. Between 2 and 8 weeks after transplantation, grafted cells were present in the recipient regions, but extensive migration and differentiation into mature neurons of grafted cells were only observed in the olfactory bulb. Clusters of graft-derived neuroblasts formi…

Central nervous systemNeurogenesisSubventricular zoneBiologyNeural stem cellOlfactory bulbCell biologymedicine.anatomical_structurenervous systemNeurologyNeuroblastCerebral cortexmedicineNeurology (clinical)Olfactory ensheathing gliaNeuroscienceAnnals of Neurology
researchProduct

Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex.

2011

International audience; The piriform cortex layer II of young-adult rats presents a population of prenatally generated cells, which express immature neuronal markers, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX), and display structural characteristics of immature neurons. The number of PSA-NCAM/DCX expressing cells in this region decreases markedly as age progresses, suggesting that these cells differentiate or die. Since the piriform cortex receives a major input from the olfactory bulb and participates in olfactory information processing, it is possible that the immature neurons in layer II are affected by manipulations of the olfac…

MaleMESH: Cell DifferentiationMESH: Neural Stem CellsMESH: Olfactory BulbDoublecortin ProteinMESH: RatsNeurogenesisMESH : MaleMESH : Neurogenesis[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Rats WistarNeural Stem CellsPiriform cortexAnimalsMESH: AnimalsRats WistarOlfactory memoryMESH : Olfactory BulbbiologyMESH : Olfactory PathwaysMESH : RatsGeneral NeuroscienceNeurogenesisCell DifferentiationOlfactory PathwaysMESH: Rats WistarOlfactory BulbMESH: MaleRatsOlfactory bulbDoublecortinMESH: Neurogenesisnervous systemMESH : Neural Stem Cellsbiology.proteinNeural cell adhesion moleculeOlfactory ensheathing gliaMESH : AnimalsNeuNNeuroscienceMESH : Cell Differentiation[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH: Olfactory Pathways
researchProduct

Clinical application of adult olfactory bulb ensheathing glia for nervous system repair

2011

Abstract The ability of adult olfactory bulb ensheathing glia (OB-OEG) to promote histological and functional neural repair has been broadly documented. Pre-clinical studies show that beneficial effects of adult OB-OEG are repeatable in the same type of spinal cord injury initially tested, in other spinal cord and CNS injury models, in different species and after the administration of these cells in different forms (either alone or in combination with other cells, drugs, products or devices). These studies demonstrate the reproducibility, robustness, fundamental nature and relevance of the findings. Therefore, the use of adult OB-OEG for spinal cord injury repair meets the scientific criter…

Olfactory systemNervous systemanimal structuresbusiness.industryRegeneration (biology)Central nervous systemAge Factorsmedicine.diseaseOlfactory BulbNerve RegenerationOlfactory bulbTransplantationmedicine.anatomical_structureDevelopmental NeuroscienceNeurologymedicineAnimalsHumansOlfactory ensheathing gliabusinessNeurogliaSpinal cord injuryNeuroscienceCells CulturedSpinal Cord InjuriesExperimental Neurology
researchProduct

Synaptogenesis in the mouse olfactory bulb during glomerulus development

2008

Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses we…

Olfactory systemNeuropilTime FactorsPhalloidineSynaptic MembranesSynaptogenesisGAP-43Nerve Tissue ProteinsBiologymitral cellsSynaptic TransmissionOlfactory Receptor NeuronsMiceGAP-43 ProteinOlfactory MucosaOlfactory nerveolfactory sensory neuronsNeuropilmedicineAnimalsGlomerulus (olfaction)Membrane GlycoproteinsGeneral NeuroscienceSV-2Cell DifferentiationDendritesOlfactory BulbOlfactory bulbmedicine.anatomical_structureSynapsesembryonic structuresSynaptic VesiclesOlfactory ensheathing gliaolfactory epitheliumsense organsNeuroscienceOlfactory epitheliumBiomarkers
researchProduct

Subcellular localization of m2 muscarinic receptors in GABAergic interneurons of the olfactory bulb

2000

We analysed the ultrastructural distribution of the m2 muscarinic receptor (m2R) in the rat olfactory bulb (OB) using immunohistochemical techniques and light and electron microscopy. m2R was differentially distributed within the cellular compartments of gamma-aminobutyric acid (GABA)ergic bulbar interneurons. It is located in the gemmules of granule cells and in the synaptic loci of the interneurons of the external plexiform layer, suggesting that m2R activation could modulate the release of GABA from these interneurons onto principal cells by a presynaptic mechanism. By contrast, the receptor appears in the somata and dendritic trunks of second-order short-axon interneurons located in the…

Olfactory systemnervous systemOlfactory nervePostsynaptic potentialGeneral NeuroscienceOlfactory tubercleGABAergicOlfactory ensheathing gliaOlfactionBiologyNeuroscienceOlfactory bulbEuropean Journal of Neuroscience
researchProduct

Distribution of D2 dopamine receptor in the olfactory glomeruli of the rat olfactory bulb

2005

Dopamine plays key roles in the processing of the olfactory information that takes place in the olfactory glomeruli. Previous studies using autoradiography demonstrate that, at the glomerular level, these actions are mainly mediated via activation of D2 dopamine receptors. Moreover, it has been suggested that D2 receptors could be present in the olfactory nerve, where they might modulate the entrance of olfactory input into the brain. Nevertheless, the precise subcellular localization of D2 receptors in the glomerular neuropil has not been investigated. In this report, we show the subcellular distribution of D2 receptors in the glomerular circuits of Wistar rats, using pre-embedding immunog…

Olfactory systemurogenital systemGeneral NeuroscienceOlfactory tubercleDopaminergicOlfactionBiologyurologic and male genital diseasesOlfactory bulbmedicine.anatomical_structureOlfactory nerveNeuropilmedicineOlfactory ensheathing gliaNeuroscienceEuropean Journal of Neuroscience
researchProduct

Amyloid-Beta Induces Different Expression Pattern of Tissue Transglutaminase and Its Isoforms on Olfactory Ensheathing Cells: Modulatory Effect of In…

2021

Abstract Alzhèimer Disease (AD) is characterized by protein aggregates in the brain, including amyloid-beta (Aβ), a substrate for tissue transglutaminase (TG2). We assessed the effect of full native peptide of Aβ (1–42), the fragments (25–35 and 35–25) on TG2 expression and its isoforms (Long and Short) on mouse Olfactory Ensheathing Cells (OECs). The levels of cytoskeletal proteins, Vimentin and Glial Fibrillary Acid Protein, were also studied. The effect of the pre-treatment with Indicaxanthin on cell viability, total Reactive Oxygen Species, superoxide anion and apoptotic pathway activation was assessed. Since Nestin is co-expressed in pluripotent stem cells with cyclin D1, their levels …

Pyridinestissue transglutaminase; olfactory ensheathing cells; amyloid-beta; oxidative stress; Indicaxanthin; self-renewalApoptosisAmyloid‐betaIndicaxanthinVimentinself-renewallcsh:ChemistryNestinMicechemistry.chemical_compoundProtein IsoformsCyclin D1lcsh:QH301-705.5SpectroscopybiologySuperoxideOpuntiaCell DifferentiationGeneral MedicineOlfactory Bulbamyloid-betaBetaxanthinsComputer Science ApplicationsCell biologyIndicaxanthinAmyloid betaTissue transglutaminase; Olfactory Ensheathing Cells; Amyloid-Beta; oxidative stress; In-dicaxanthin; self-renewalArticleGene Expression Regulation EnzymologicCatalysisInorganic ChemistryCyclin D1Alzheimer DiseaseGTP-Binding ProteinsGlial Fibrillary Acidic ProteinAnimalsHumansVimentinProtein Glutamine gamma Glutamyltransferase 2Viability assayPhysical and Theoretical ChemistryMolecular BiologyAmyloid beta-PeptidesTransglutaminasesOrganic ChemistryTissue transglutaminaseNestinSelf‐renewalNerve Regenerationlcsh:Biology (General)lcsh:QD1-999chemistryOxidative stressOlfactory ensheathing cellsbiology.proteinOlfactory ensheathing gliaReactive Oxygen SpeciesInternational Journal of Molecular Sciences
researchProduct